
1 D2.1 - WP2 (LIFL) Optimization
algorithms designed

ALEXANDRU-ADRIAN TANTAR,
NOUREDINE MELAB, EL-GHAZALI TALBI
Laboratoire d’Informatique Fondamentale de Lille,
LIFL/CNRS UMR 8022, DOLPHIN Project - INRIA Futurs.

1.1 INTRODUCTION

With the evolution of distributed high-performance and high-throughput computing
and with the support of nuclear magnetic resonance (NMR) data, we are at the dawns
of a new era in molecular research and pharmaceutical drug design. Having been
studied for more than a decade and of particular interest, protein-protein1 docking is
fundamental in understanding biomolecular processes, interactions between antibod-
ies and antigens, intra-cellular signaling modulation mechanisms, inhibitor design,
macromolecular interactions and assemblies, etc. In conceptual terms, the molecu-
lar docking describes the complexed macromolecule resulting from the binding of
two separate folded molecules, exerting geometrical and chemical complementarity.
From a computational standpoint, in silico docking simulates molecular recognition,
although not relating to the molecular pathways of the process but to the final com-
plexed result.

The docking problem combines three interrelated principal algorithmic compo-
nents: a model for representing the molecular complexes, algorithmic mechanisms
for performing conformational space search, and a scoring modulus for evaluating
the potential solutions. The binding energy landscape has a funnel-like shape, thus

1proteins were discovered in 1838 by Jöns Jakob Berzelius, a Swedish chemist, the term being derived
from the Greek protas, standing for ”of primary importance”.
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the search for an optimal conformation aims for a global-minimum energy configu-
ration.

The existing approaches may be differentiated in bound and unbound docking.
Bound docking initiates having the receptor and the ligand molecules in a binded
conformation, the computational approach being an attempt of reconstructing the
originating complex. In this case the component parts of the process are obtained
from an initial X-ray/NMR crystal structure enclosing both the ligand and the re-
ceptor, in a bound form. At a higher level of complexity, predictive computational
schemes involve unbound structures for the ligand and the receptor which, in this
case, may originate from crystallographic native-structure data, ab-initio calcula-
tions, etc.

The importance of the protein-protein docking problem is reinforced by the ubiq-
uitousness of proteins in the living organisms, applications of computational molecu-
lar docking directing to computer assisted drug design and computer assisted molec-
ular design. From a structural point of view, proteins are complex organic com-
pounds composed of amino-acid residue chains joined by peptide bonds - refer to
Fig. 1.1 for a schematic example. Proteins are involved in immune response mecha-
nisms, enzymatic activity, signal transduction, etc.
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Fig. 1.1 Amino-acid: A - NCαC back-bone structure; B - polymeric structure; ω, Φ and Ψ
relate to dihedral angles; R designates the specific amino acid’s side chain characteristic.

Due to the intrinsic relation between the structure of a molecule and its function-
ality, the problem implies important consequences in medicine and biology related
fields. An extended referential resource for protein structural data may be accessed
through the Brookhaven Protein Data Bank2 [Bernstein et al., 1977]. For a compre-
hensive introductory article on the structure of proteins, consult [Neumaier, 1997].
Also, for a glossary of terms, see [H. Van de Waterbeemd, 1997].

2http://www.rcsb.org - Brookhaven Protein Data Bank; offers geometrical structural data for a large num-
ber of proteins.
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1.1.1 Complexity Considerations

The accuracy of the computational docking is inherently determined by the flexibility
level used in modeling the ligand and the receptor molecules. Simulating flexibility is
computationally expensive, hence a bias is mandatory at the price of the accuracy of
the results. A classification of the existing approaches by considering the flexibility
as a criterion conducts to a classification consisting of three classes of docking:

• rigid docking - an extreme simplification of the docking process by consid-
ering both the ligand and the receptor as rigid entities, no flexibility being
allowed at any point, nor the ligand, nor the binding site in the receptor;

• partially flexible docking - to some extent flexibility is modeled in the process
by focusing on the smaller molecule - typically the ligand - or by defining
comprehensive regions of significance;

• flexible docking - both the ligand and the receptor are modeled as flexible
molecules, although, to some extent, limitations may be imposed in order
to reduce the computational complexity. An example of molecular docking
of a highly flexible ligand to a highly flexible macromolecule is described in
[Teodoro et al., 2001].

The docking problem is computationally difficult, as the number of possible bind-
ing combinations exponentially increases in correlation with the magnitude of the in-
volved molecular complexes. The corresponding degrees of freedom are determined
by the three translational and the three rotational axes. As a consequence, ligand and
binding-site flexibility is computationally expensive to model, increasing the number
of possible conformations (resulting as a power of the number of rotatable bonds). As
an example, [Lorber and Shoichet, 1998] note that for a molecular complex with ten
rotatable bonds and with six minima allowed per bond, the number of possible con-
formations rises at 3.48× 109. As a direct implication, no extensive conformational
space exploration is possible, unless a priori information is provided. Different ap-
proaches may be considered for attaining complexity reduction, as by assuming and
employing knowledge of the binding site as well as by performing rigid-body dock-
ing. The main drawbacks incurred in such approaches are the fact that there might
exist multiple potential binding sites and that extensive simplification may lead to
inaccurate models and predictions of the native molecular complexes.

1.2 INTRODUCTION TO LARGE-SCALE GRID COMPUTING

The proliferation of research and industrial projects on grid computing is leading
to the proposition of several, sometimes confusing, definitions of the grid concept.
As a consequence, a number of articles [Foster et al., 2001], [Krauter et al., 2002]
especially address an attentive analysis of these definitions. A computational grid is a
scalable pool of heterogeneous dynamic resources, geographically distributed across
multiple administrative domains and owned by different organizations. Discussing
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the afferent defining characteristics, a summarizing description might be formulated
as follows:

• the grid includes multiple autonomous administrative domains - the users and
providers of resources are clearly identified. This allows to reduce the com-
plexity of the security issue, however, the firewall traversal remains a criti-
cal problem to deal with. In global computing middlewares based on large
scale cycle stealing, such as XtremWeb [Germain et al., 2000], the problem is
solved in a natural way as communications are initiated within the boundaries
of the domains, ”inside the domains”.

• the grid is heterogeneous - the heterogeneity in a grid is intensified by its
large number of resources belonging to different administrative domains. The
emergence of data exchange standards and platform independent technologies
such as Java RMI allows to deal with the heterogeneity issue.

• the grid has a large scale - the grid has a large number of resources grow-
ing from hundreds of integrated resources to millions of PCs. The design of
performant and scalable grid applications has to take into account the commu-
nication delays.

• the grid id dynamic - the dynamic temporal and spatial availability of resources
is not an exception but a rule in a grid. Due to the large scale nature of the grid,
the probability of a number of resources failing is high. Such characteristic
highlights issues such as dynamic resource discovery, fault tolerance, and so
on.

Furthermore, on an algorithmic scale, computational performance is achieved
through hybrid parallel cooperative meta-heuristics - the gridification of such an ap-
proach requires taking into account at the same time the characteristics and under-
lined issues of the computational grids and the parallel cooperative models. Some of
the issues related to grids may be solved by middlewares allowing to hide their inher-
ent complexity to users. The number of issues that could be solved in a transparent
way for the users depends on the middleware at hand. The choice of this later is cru-
cial for performance and ease of use. Maintaining a logical communication topology
in a volatile environment may be complex and inefficient due to the hight cost of the
dynamic reconfiguration of the topology. For example, for an island-based model,
one of the approaches allowing to deal with such issue is based on a shared space for
storing the emigrant solutions between the islands. The island that initiates a migra-
tion operation sends the emigrants to the shared space, and these later are stored to-
gether with the identity of their source islands. Islands can also initiate immigration
operations by sending requests to the shared space, and immigrants are randomly
chosen from this later. In [Belding, 1995], it has been experimentally proven that
random topologies (random selection of the target islands) could be as efficient as
the common topologies (ring, mesh, etc.). Grid middlewares that support such ap-
proaches are Dispatch-Worker ones such as XtremWeb. In such systems, clients can



MOLECULAR DOCKING v

submit their jobs to the dispatcher. A computational pool of volatile workers request
the jobs from the dispatcher according to the large cycle stealing model. Then, they
execute the jobs and return back the results to the dispatcher to be collected later by
the clients. The islands could be deployed as workers and the dispatcher could serve
to provide the global space.

One of the major limitations of such middlewares is that they are well-suited for
embarrassingly parallel (e.g. multi-parameter) applications with independent tasks.
In this case, no communication is required between the tasks, and thus workers.
The deployment of parallel cooperative meta-heuristics that need cross-worker/task
communication is not straightforward. The developer has the burden to manage and
control the complex coordination between the workers. To deal with such problem
existing middlewares must be extended with a software layer which implements a co-
ordination model. Several examples of interesting coordination models may be found
in the works of [Gelernter and Carriero, 1992] and [Papadopoulos and Arbab, 1998].

1.3 MOLECULAR DOCKING

1.3.1 Resolution Schemes for Molecular Docking

As no exploration method is applicable for performing an exhaustive conformational
space search, due to computational complexity matters, approximation schemes are
employed as resolution patterns for molecular docking. The related exploration
algorithms, in basic form, can be classified in geometric complementarity meth-
ods, molecular dynamics based algorithms, Monte Carlo methods, evolutionary ap-
proaches, etc. In the followings, a few standard approaches are sketched, referential
work being cited as starting point for further study - to no extent and by no means
exhaustive as description, serving for no more than a basic outline.

1.3.1.1 Geometric Matching Molecular complementarity, on a geometrical and
biochemical basis, may be computationally simulated by using geometric primitives
for defining the molecular constituent entities, i.e. atoms, etc. Different geometrical
attributes may be used at this point in order to define an optimal conformation as, for
example, surface normals, molecular overlap, etc. Matching techniques utilize geo-
metric hashing and indexing schemes, grid-based Fast Fourier Transformation (FFT)
docking correlation, rigid three-dimensional geometric transformations (as affine and
projective transformations), etc.

For a more in detail, geometry oriented, discussion of the aforementioned con-
cepts, please refer to [Wolfson and Rigoutsos, 1997]. For an induced-fit, geometry
based, docking exemplification, refer to [Sandak et al., 1998] - within their article,
a computer vision inspired, hinge-bending docking approach is illustrated. As the
authors remark, domain movements, at different structural levels, represent an essen-
tial element to consider when constructing a molecular docking resolution pattern.
Conformational modifications were allowed for both the ligand and the receptor,
thus providing an induced-fit docking procedure - although inside-domain confor-
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mational rigidity is maintained, molecular flexibility is simulated by allowing for
domain movements.

The algorithm, as the authors note, has been tested on five complexes, using a flex-
ible docking approach, allowing hinge-bending movements in the ligand molecules:
(1) the HIV-1 protease with the U-75875 inhibitor, (2) the dihydrofolate reductase
complexed with methotrexate and, (3) separately with NADPH, (4) lactate dehydro-
genase complexed with NAD-lactate and, (5) a Fab fragment of an IgG antibody
complexed with a peptide antigen. The obtained average RMS of the correct solu-
tions is reported to be at 1.4Å with a one minute average execution time for each
complex - the experiments were conducted on a SGI-Challenge R8000 machine.

1.3.1.2 Monte Carlo Techniques Monte Carlo methods, or, in extenso, impor-
tance sampling and Markov chain Monte Carlo, perform random conformational
space exploration, discriminating the selected conformations by following a Boltz-
man probability distribution model. Monte Carlo methods are commonly employed
as refinement components in multi-stage molecular docking, in correlation with terms
for quantifying solvation and electrostatic effects, etc. A multi-stage molecular dock-
ing approach usually consists of (a) an initial, fast, conformational sampling phase,
relying upon soft-docking techniques, geometric matching, etc, and (b) a final phase
accounting for the refinement of the resulting conformations - achieved by perform-
ing accurate energy calculations, increased flexibility, etc.

In [Fernandez-Recio et al., 2002a] an approach including Monte Carlo algorith-
mic components is exposed, a more detailed study of the initial method being pub-
lished in [Fernandez-Recio et al., 2002b]. The authors analyzed several protein-
protein complexes, for all the reported cases, the obtained conformations falling
within 3.0Å RMSD as compared to the crystal structure. As a first step, automated
rigid-body Monte Carlo docking simulations are conducted on a non-redundant data
set of protein-protein complexes, soft interaction energy potentials being pre-computed
over a grid enclosing the potential active site. The sampling phase is carried by
a pseudo-Brownian Monte Carlo algorithm, the Metropolis criterion being used as
conformational filter. For the initial phase, a complete simulation cycle consists of
20000 energy evaluations, at the end of each random step, a local optimization being
performed. The second phase, the refinement step, is focused on further optimizing
the interface side-chains by using a Biased Probability Monte Carlo algorithm - the
induced fit of the association is thus simulated, allowing for near native conformation
solutions.

1.3.1.3 Evolutionary Algorithms Evolutionary algorithms are stochastic search
iterative techniques, inspired from the Darwinian evolutionary theory, having a large
area of appliance - epistatic, multi-modal, multicriterion and highly constrained prob-
lems [Cahon et al., 2005a]. Stochastic operators are applied for evolving an initial
randomly generated population, in an iterative manner, i.e. in generations. Each of
the individuals composing the population contains genotype information encoding
its defining features - the phenotype. Each generation undergoes a selection process,
the individuals being evaluated by employing a problem specific fitness function.
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Algorithm 1.6.1. EA pseudo-code.
Generate(P (0));
t := 0;
while not Termination Criterion(P (t)) do

Evaluate(P (t)) ;
P ′(t) := Selection(P (t)) ;
P ′(t) := Apply Reproduction Ops(P ′(t)) ;
P (t + 1) := Replace(P (t), P ′(t)) ;
t := t + 1;

endwhile

The pseudo-code above exposes the generic components of an EA. The main
subclasses of EAs are the genetic algorithms, evolutionary programming, evolution
strategies, etc.

Due to nontrivial addressed problems, requiring extensive processing time, dif-
ferent approaches were designed in order to reduce the computational costs. Com-
plexity is also addressed by developing specialized operators or hybrid and parallel
algorithms. We have to note that the parallel affinity of the EAs represents a feature
determined by their intrinsic population-based nature. In [Cahon et al., 2004a] three
main parallel models are identified - the island synchronous cooperative model, the
parallel evaluation of the population and the distributed evaluation of a single solu-
tion.

Genetic algorithms (GAs) are population-based metaheuristics that allow a pow-
erful exploration of the conformational space. However, they have limited search in-
tensification capabilities, which are essential for neighborhood-based improvement
(the neighborhood of a solution refers to part of the problem’s landscape). Therefore,
different approaches combine GAs with local search methods, in order to improve
both the exploration and the intensification capabilities of the two techniques.

For a complete overview on parallel and grid specific metaheuristcs, please refer
to [Cahon et al., 2005a], [Talbi, 2002], [Alba et al., 2005b], [Cahon et al., 2004a].

1.4 MOLECULAR DOCKING ON GRIDS

The main computational challenge of molecular docking consists in screening a large
number of compounds against a protein target, in the search for a potential inhibitor
to be further used in drug design. Considering a real-life approach, several prob-
lematic elements have to be overcame - screening chemical databases consisting of
millions of compounds rises data transfer and storage difficulties as well as com-
putational time problems. As specified in [Buyya et al., 2003], considering a few
minutes to hours as the expense for screening a compound on a standard desktop
computer, depending on structural complexity, results in years for screening the en-
tire database. The authors extrapolate offering a more specific example for edifying
on the computational complexity - for a screening involving 180000 compounds, and
with a per-compound execution time expected to take about three hours on a desktop
computer, the amount of required processing time raises at 540000 hours - more than
60 years. Moreover, as the authors indicate, a cluster-based supercomputer with 64
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nodes might reduce the computation time to about one year, or, further, to be solved
by a grid of hundreds of computers within a day.

As an outline for the molecular docking on grids, it may be stated that the pro-
cess is largely biased towards the computational aspect, a reduced fraction of time
being allocated for data transfer. Nevertheless, data transfer imposes as a problem
as it is impractical to replicate an entire database of compounds over the nodes of a
distributed environment. Alleviating the problem is possible by selective replication
of the database over a reduced number of coordinating nodes, as well as by dynamic
data distribution, inquiring remote databases as the computation advances.

Although extensively platform and grid-environment oriented and not offering
relevant information regarding the details of the employed docking protocol, the
work of [Buyya et al., 2003] represents a starting point in understanding the prin-
ciples of a grid enabled approach. The docking code enclosed in the environment,
DOCK, represents a research result of the University of California in San Francisco
(UCSF) - a comprehensive insight of the algorithm is given in [Ewing and Kuntz, 1998].

The paper is concerned in offering the development details of a Virtual Labora-
tory, as the authors entitled the developed computing system, constructed on top of
several existing Grid technologies.

Scheduling experimentations are reported to have been conducted on a grid re-
source in Australia (one Sun: Ultra-1 node) with the additional support of four re-
sources in Japan (three sites regrouping twelve Sun: Ultra-4 nodes and two Sun:
Ultra-2 nodes) and one in U.S.A. (eight Sun: Ultra-8 nodes). The experimentation
consisted in a 200 molecules screening trial, on a endothelin converting enzyme
(ECE) receptor.

Another impressive large scale docking on grids is reported in [N. Jacq, 2006],
the article reporting on the effort of developing new drugs for fighting malaria -
part of the WISDOM project (World-wide In Silico Docking on Malaria, a European
initiative initially reuniting the Fraunhofer Institute for Algorithms and Scientific
Computing, in Germany, and the Corpuscular Physics Laboratory, CNRS/IN2P3, in
France). The goal of the project aimed in proposing new potential inhibitors for a
family of proteins produced by Plasmodium falciparium, as drug resistance reduced
the efficiency of classical pharmaceutics. The demonstration took place starting from
the 11th of July until the 19th of August, 2005, enumerating over 46 million docked
ligands and simultaneously gathering 1700 computers from 15 countries around the
world. Another closely related report is offered in [Hurng-Chun Lee and Wu, 2006],
an outcome of the first mentioned article, fighting against avian flu. Authors mention
the work to be based on docking tools such as AutoDock. The performed exper-
iments made use of more than 2000 CPUs, performing virtual screening over the
extent of six weeks. Authors report to have screened eight protein targets against
308585 compounds, each target simulating a possible mutations of the avian flu
virus. The estimated equivalent sequential computation time was estimated at more
than 16 years, with an overall speed-up of 203, while having a distribution efficiency
of 84%. The corroborated results for the two experiments are presented in Table 1.4,
as exposed by the authors in the papers cited above:
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Compl. dockingsa Duration 1CPU Exec.b Speedup Distr. Eff.c

2 * 106 6 weeks 88.3 years 767.37 38.4%
308585 30 days 16.7 years 203 84%

The first line of the table coresponds for the WISDOM experiment. aTotal number of completed dockings.
bEquivalent execution time on 1 CPU. cDistribution efficiency - defined as the approximation of the ratio
between the overall speedup and the maximum number of concurently CPUs.
The experiment resulted in more than two millions of docking complexes, cumulat-
ing 123440 files with a total amount of 600 Gigabytes of data, stored for further study
and in-depth biological analysis, to be performed in several research laboratories.

In the same line of ideas, in [Nakajima et al., 2004] a Grid-enabled conforma-
tional space approach is presented, CONFLEX-G, the exposed method being de-
rived from CONFLEX, an sequential exhaustive conformational space search of
low-energy regions. The implementation is based on a grid RPC system, called
OmniRPC, a thread safe implementation of Ninf RPC. The original CONFLEX al-
gorithm, as defined by the authors, consists of four distinct stages:

• an initial conformation is extracted from a previously discovered database of
conformers;

• perturbations are applied on the initial selected structure, in order to generate
trial structures;

• the previously generated trial structures are optimized on a geometrical basis;

• the optimized structures are compared with other conformers stored in a database,
preserving the newly discovered structures.

Trial structures, as mentioned in the paper, are obtained by corner flapping and
edge flipping for the ring atoms and stepwise rotation for side-chains or backbone-
chains. Observing that the geometry optimization phase takes as much as 95% of the
spent computational time, the method has been parallelized using a Master/Worker
technique.

1.5 MOLECULAR DOCKING SOFTWARE

Considering the numerous techniques and applications developed in order to address
the molecular docking problem, it is not possible to enumerate even an infinitesimal
fraction of the existing software applications. As a consequence, in the followings,
a resume is presented, enclosing a reduced number of the most representative de-
veloped applications. An ample review discussing the characteristics of different
existing molecular docking software is presented in [R.D. Taylor and Essex, 2002],
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offering a categorized approach and discussing scoring function aspects and multi-
ple method algorithms. The final part of the article offers bibliographic references
regarding techniques comparison studies.

1.5.1 AutoDock

AutoDock3, Automated Docking of Flexible Ligands to Macromolecules, is a collec-
tion of components with aims ranging from the interactive definition of the torsion
angles to automatic docking. The software is distributed free of charge for academic
and non-commercial use, a commercial version being also available. AutoDock rep-
resented the basis of several large-scale experiments on grids, as mentioned in the
previous section, being also employed behind the FightAIDS@Home4 project - re-
ported to have cumulated over 2 × 1015 energy evaluations for HIV-1 protease can-
didate inhibitors. In addition, AutoDockTools or ADT, comes to complete the appli-
cation by offering a visual interface. From an algorithmic point of view, AutoDock
employs several evolutionary techniques, including also Monte Carlo simulated an-
nealing and Lamarckian Genetic Algorithm. The AMBER-derived force field model
is based on linear regression analysis, using empirical weighting factors determined
from protein-ligand complexes for which the binding constants are known. A de-
tailed description is available in [Morris et al., 1999].

1.5.2 DOCK

DOCK represents one of the pioneering programs in molecular docking, at its ori-
gins, approximating the process by considering both the ligand and the receptor as
rigid molecules. The docking algorithm consists of a conformational search method
and a scoring function, relying on graph theoretical techniques for superimposing lig-
and atoms onto predefined sets of points in the active site. The algorithm presumes on
the chemical and geometrical complementarity of the molecules, hence inaccurately
modeling docking processes involving conformational modifications. Furthermore,
the algorithm is directed by considering a priori designated potential important re-
gions, thus alleviating the computational complexity incurred by the conformational
sampling process. Newer versions of DOCK offer the possibility of modeling the
ligand in a flexible manner, as well as simulating protein flexibility by using multiple
conformations. Details may be found in the work of [Ewing and Kuntz, 1998] which
offers an insight over the graph techniques enclosed in the algorithm, presenting in
the final part a number of experiment-extracted results.

3http://www.scripps.edu/mb/olson/doc/autodock
4http://fightaidsathome.scripps.edu
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1.5.3 FlexX and FlexE

FlexX5 is a fragment-based incremental construction algorithm, FlexE being derived
from the aforementioned, essentially, it makes use of ensemble approach adapted
concepts - scoring function, interaction scheme, incremental construction algorithm
etc. The molecular docking process in FlexX considers multiple stages, initiating by
selecting a base ligand fragment - determinant for the rest of the process; a geometry
interaction database is used for the selection. Further, a geometric based alignment
is performed, including hydrophobic interaction elements and geometric constraints
- finally the ligand is built into the active site, in incremental fashion. A comparison
test case of FlexX and FlexE is presented in [Holger Claußen and Lengauer, 2001],
the experimentations being performed on ten protein structures ensembles - an over-
all of 105 crystal structures. FlexE is reported to find conformations with a 2.0Å
RMSD for 67% of the cases, while, in the same context, FlexX amounts for 63%.

1.6 PARALLEL METAHEURISTICS FOR SOLVING THE PSP/DOCKING

1.6.1 Genetic Algorithm

Evolutionary algorithms are stochastic search iterative techniques, with a large area
of appliance - epistatic, multi-modal, multicriterion and highly constrained problems
[Alba et al., 2005a]. Stochastic operators are applied for evolving the initial ran-
domly generated population, in an iterative manner. Each generation undergoes a
selection process, the individuals being evaluated by employing a problem specific
fitness function.

Algorithm 1.6.1. EA pseudo-code.

Generate(P (0));
t := 0;
while not Termination Criterion(P (t)) do

Evaluate(P (t));
P ′(t) := Selection(P (t));
P ′(t) := Apply Reproduction Ops(P ′(t));
P (t + 1) := Replace(P (t), P ′(t));
t := t + 1;

endwhile

The pseudo-code in Alg. 1.6.1 exposes the generic components of an EA. The
main subclasses of EAs are the genetic algorithms, evolutionary programming, evo-
lution strategies, etc.

Genetic Algorithms (GAs) are Darwinian-evolution inspired, population-based
metaheuristics that allow a powerful exploration of the conformational space. How-
ever, they have limited search intensification capabilities, which are essential for
neighborhood-based improvement (the neighborhood of a solution refers to part of

5http://www.biosolveit.de/FlexX
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the problem’s landscape). A random population of individuals is evolved in gen-
erations through different strategies in order for convergence to be achieved. The
genotype represents the raw encoding of individuals while the phenotype encloses
the coded features. For each generation, individuals are selected on a fitness basis,
genotype alteration being performed by means of crossover and mutation operators.
Applying the genetic operators has as result the modification of the population’s
structure as to intensify exploration inside a delimited segment or for diversification
purposes.

1.6.1.1 Encoding of the conformations The algorithmic resolution of the PSP, in
heuristic context, is directed through the exploration of the molecular energy surface.
The sampling process is performed by altering the backbone structure in order to
obtain different structural variations.

Different encoding approaches were considered in literature, the trivial approach
considering the direct coding of atomic Cartesian coordinates. The main disadvan-
tage of direct coding is the fact that it requires filtering and correcting mechanisms,
inducing non-negligible affected times. Moreover, by using amino-acid based cod-
ings [Krasnogor et al., 1999], hydrophobic/hydrophilic models were developed. In
addition, several variations exist, making use of all-heavy-atom coordinates, Cα co-
ordinates or backbone atom coordinates, where amino-acids are approximated by
their centroids.

For the herein described method, an indirect, less error-prone, torsional angle
based representation was preferred, knowing that, for a given molecule, there exists
an associated sequence of atoms. More specifically, each individual is coded as a
vector of torsion angle values - Fig. 1.2.

Fig. 1.2 Chromosome encoding based on specifying the backbone torsional angles.

The defined number of torsion angles represents the degree of flexibility. Apart
from torsion angles which move less than a specified parameter, all torsions are ro-
tatable. Rotations are performed in integer increments, energy quantification of co-
valent bonds and non-bonded atoms interactions being used as optimality evaluation
criterion.
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1.6.1.2 Scoring function The scoring function is computed by making use of
bonded atoms energy and non-bonded atoms energy through an independently de-
veloped force field function. The quantification of energy is performed by using
empirical molecular mechanics, as depicted in Table 1.6.1.2. An extensive discus-
sion on force fields designed for protein simulations, with in-depth details, is offered
in the article of [Ponder and Case, 2003]. The first part of the mentioned work cov-
ers the evolution of the force fields, starting from the 1980s and discussing various
formulations which include the Amber, CHARMM and OPLS force fields.

Table 1.1 Scoring function quantifying the inter-atomic interactions.

E =
∑

bonds

Kb(b− b0)2

+
∑

bondangle

Kθ(θ − θ0)2

+
∑

torsion

Kφ(1− cos n(φ− φ0))

+
∑

V an der Waals

Ka
ij

d12
ij
− Kb

ij

d6
ij

+
∑

Coulomb

qiqj

4πεdij

+
∑

desolvation

Kq2
i Vj+q2

j Vi

d4
ij

The involved factors model oscillating entities, the inter-atomic forces being con-
ceptually simulated by considering interconnecting springs between atoms. A spe-
cific constant is associated with each type of interaction, notationally denoted by
Kinter. An optimal value for the considered entity (bond, angle, torsion) is intro-
duced in the equation as reference for the variance magnitude - (A− A0). A stands
for the experimentation value, while A0 specifies the natural, experimentally ob-
served value. More specific, b represents the bond length, θ the bond angle, φ the
torsion angle and qa, dij and Vp the electrostatic charge associated with a given atom,
the distance between the i and the j atoms and a volumetric measure for the p atom
respectively. Although part of the designed algorithms, we considered out of scope
for the current study to enter into further details concerning the employed force field.
The use of empirical force fields has the drawback of offering results which are not
directly comparable with results obtained through another differently-parameterized
force field. This inconvenient is avoided by ab initio techniques although at the price
of high computational demands for calculating the energy of the conformations.

An example of α− cyclodextrin energy surface is given in Fig. 1.3.
The set of corresponding molecular conformations was obtained by modifying

a specified near-optimal initial conformation. Two torsional angles were chosen at
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Fig. 1.3 Energy surface for α − cyclodextrin. High energy points are depicted in light
colors, the low energy points being identified by the dark areas.

random, for each of the two torsional angles, values between 0 and 360 being enu-
merated, in 10 degrees increments, all the other torsional angles being maintained
rigid. The lighter areas on the obtained surface correspond to high-energy confor-
mations. Furthermore, an energy-map representation is given, in the XY-plane - only
the dark regions are meaningful. The hyper-surface, generated by varying the entire
set of torsional angles has an extremely rough landscape, with a large number of
local optima.

1.6.2 Parallelization of the Genetic Algorithm

The presented GA is parallelized in a hierarchical manner. First, several GAs cooper-
ate by exchanging their genetic material (parallel island model [Alba et al., 2005a]).
Second, as the fitness function of each GA is time-intensive the fitness evaluation
phase of the GA is parallelized (parallel evaluation of the population model [Alba et al., 2005a]).
These two models are provided in a transparent way through the ParadisEO-G4
framework [Cahon et al., 2005b][Melab et al., 2006], dedicated to the reusable de-
sign of parallel hybrid metaheuristics on computational grids.

The granularity of the problem, as counterpart term for the computationally ex-
pensive fitness evaluations, biased the resolution pattern towards a parallel, coop-
erative island-model approach. As a consequence, several populations evolve on a
master machine, fitness function evaluations being distributed on remotely available
computing units. We have to note that the evaluation of the fitness function consists
of several stages, including the calculation of Cartesian atomic coordinates, inter-
atomic distances determination, etc.
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Complexity may also be addressed by developing specialized operators in con-
junction with hybrid and parallel algorithms. The parallel affinity of the EAs rep-
resents a feature determined by their intrinsic population-based nature. The main
parallel models are the island cooperative model, the parallel evaluation of the pop-
ulation and the distributed evaluation of a single solution.

For a complete overview on parallel and grid specific metaheuristcs refer to
[Cahon et al., 2005b][Talbi, 2002][Alba et al., 2005a][Cahon et al., 2004b].

Island deployment model and parallel evaluation of the individuals: multiple
algorithms are executed independently in a concurrent manner, migrations of the
individuals occurring on a periodic basis. Parallel evaluation of the population is also
employed by each algorithm - for simplicity the figure depicts only one algorithm
performing the parallel evaluation step.

The designed genetic algorithm follows the above exposed pseudo-code, includ-
ing in addition two levels of parallelism - island model and parallel evaluation of
the population. An island model was adopted in the design, several independent
algorithms being executed concurrently, the algorithms exchanging individuals at
a predefined number of iterations - emigrants and immigrants. The exchange is
performed in an asynchronous manner, i.e. no synchronization between the execu-
tion/generations of the algorithms is imposed - an important aspect to consider when
there is an interest in having algorithms converging at different rates. The emigrant
conformations are selected through a stochastic tournament technique, the integra-
tion of the immigrant individuals being performed by replacing the worst individuals
in the population. At each migration phase, one third of the population is selected
for the exchange. In addition, at each generation, the best obtained conformation till
that point is preserved.

In order to exploit the local search capabilities of the conjugated gradient local
search method, two different sets of operators were designed. For each operator type,
crossover and mutation, a simple approach was followed - a two-point crossover
and, respectively, a one-point torsion angle mutation. In addition, operators that
apply the local search method on the outcome offsprings were designed. As an
example, for the second case, the crossover generates two new conformations starting



xvi D2.1 - WP2 (LIFL): OPTIMIZATION ALGORITHMS DESIGNED

from two specified parents, the offsprings being optimized by applying the local
search method. Similarly, for the mutation operator, after applying a random torsion
angle variation on a random chosen angle, the local search method is applied. One
potential drawback of this technique resides in the fact that it may lead to a premature
convergence of the algorithm, thus a careful balancing of the two sets of operators
being required, allowing in the same time for diversity and convergence.

The migrating individuals contribute to maintaining diversity while assuring for
the coordinated convergence of all the islands.

1.6.3 Conjugated Gradient Local Search

The developed methods may benefit from relying on a hybrid architecture, combin-
ing, for example, a genetic algorithm with a conjugated gradient-based local search
method - thus, a Lamarckian optimization technique is constructed.

The exploration and the intensification capabilities of the exploration algorithms,
do not suffice as paradigm, when addressing rough molecular energy function land-
scapes. Small variations of the torsion angle values may generate extremely different
individuals, with respect to the fitness function. As a consequence, a nearly optimal
configuration, considering the torsion angle values, may have a very high energy
value, and thus, it may not be taken into account for the next generations.

In order to correct the above exposed problem, a conjugated-gradient based method
may be applied for local search, alleviating the drawbacks determined by the con-
formation of the landscape. Fig. 1.4 was obtained by applying the local search
technique for each of the conformations that were previously used for generating the
α− cyclodextrin energy surface in Fig. 1.3.
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Fig. 1.4 Energy surface obtained after applying a Lamarck local search on the initial set of
conformations.
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1.7 ADAPTIVE SIMULATED ANNEALING

1.7.1 Simulated Annealing Algorithm

Simulated annealing algorithms are solution-based metaheuristics and were intro-
duced as a generalization of Metropolis Monte-Carlo techniques, for simulating the
evolution of a solid in the process of annealing - refer to Alg. 1.7.1 for a simple
pseudo-code example. The system starts from an initial disordered state gradually
following a cooling schedule, maintaining the thermodynamic equilibrium. Modi-
fications of the current state are accepted on a Boltzmann probability distribution,
i.e. the acceptance probability being computed according to a previous found state.
Simulated annealing algorithms have a performance guarantee of finding the global
optimum provided an idealistic long enough schedule is offered. The algorithm may
act alternatively as a global search or as a local search method, depending on the
schedule.

Algorithm 1.7.1. SA pseudo-code.

Generate(S0);
k := 0;
while T (k) > Tthreshold do

for s := 1 to nbSamples do
Srand := randomMove(S0);
∆E := eval(Srand)− eval(S0);

if ∆E < 0 then
S0 := Srand;

else
S0 := Srand with prob. 1.0

1.0+e∆E/T (k)

endif
endfor
k := k + 1;

endwhile

The main drawback of the simulated annealing algorithm consists in the fact that
it is difficult to parallelize without breaking the underlying philosophy, resulting in
high computational-demanding methods. As a counterpart, there is no optimality
guarantee proof for the genetic algorithm. For our study, a limited number of sam-
ples were generated at each step of the schedule, the samples being evaluated in
parallel. Furthermore, a synchronous multi-start model is employed for launching
several SA algorithms in parallel on a random generated set of initial solutions, at
each step of the schedule, a specified number of sampled conformations being eval-
uated in parallel. The overall best found value is considered as final result. Although
more complex simulated annealing variants may be constructed, for our purposes
a minimalist version was preferred as to not induce an artificial bias between the
compared algorithms.

Another problem to be considered for the simulated annealing algorithm would
be the design of a cooling schedule to be followed. For our case a simple expo-
nential decreasing schedule was considered, at each iteration of the algorithm, the
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temperature being reduced by multiplication by a fixed constant. In this case, the
initial temperature must also be attentively selected. More sophisticated variants
of simulated annealing algorithms render the method less sensitive to the different
parameters involved, i.e adaptive versions, etc.

1.7.2 Adaptive Simulated Annealing Formalism Basis

The main directions to be followed in improving the basic simulated annealing tech-
nique consider modifications of the generating probability density function, the tem-
perature schedule or parallel and hybridization schemes. The adaptive simulated
annealing technique presented in the work of Ingber [Ingber, 1993a] relies on peri-
odically reannealing the temperature while modifying different control parameters
in concordance with the explored landscape - a simulated quenching technique may
also be employed. As opposed to Boltzman simulated annealing, the Ingber’s adap-
tive variant samples the ergodic space in a D + 1 dimensional space, where D rep-
resents the cardinality of a solution, i.e. the number of configuration parameters, the
additional element standing for the associated fitness value.

Adaptive simulated annealing represents an outcome of a previous method, Very
Fast Simulated Reannealing (VFSR) which exploited the characteristics of a specific-
designed generating function in order to allow for an exponential faster annealing
process, as compared to Boltzman annealing. Adding a reannealing step allows to
adjust the control parameters of the algorithm as influenced by sensitivities measured
in the multidimensional space, for each of the configuration parameters which model
a solution.

In the followings a few basic notions are exposed in order to set the basis for
formally sketching the phases of an adaptive simulated annealing algorithm - to no
extent exhaustive as presentation. Please refer to the work of Ingber for detailed de-
scriptions, including comparison and test case studies [Ingber, 2001][Ingber, 1996]
[Ingber, 1993a][Ingber, 1993b][Ingber and Rosen, 1993] - the associated source code
for the method is publicly available. For the herein presented case, a custom simpli-
fied implementation was preferred as starting point.

A standard simulated annealing consists of (1) a probability density function of
the state space, g(x), (2) an acceptance probability function, h(∆E), and (3) an an-
nealing schedule, T (k). The annealing schedule is defined over a number of discrete
steps, serving as control parameter for the acceptance probability function. The ac-
ceptance function offers a quantification for the probability of performing a transition
from an Ek energy state to a new state with energy Ek+1, being defined as follows:

h(∆E) = exp(−Ek+1/T )
exp(−Ek+1/T )+exp(−Ek/T ) = 1

1+exp(∆E/T )

1
1 + exp(∆E/T )

≈ exp(−∆E/T ),∆E = Ek+1 − Ek

The acceptance function allows for high acceptance rates at high temperatures
while leading to low acceptance rates with the decrease of temperature - thus a bias
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towards improved solutions is induced. High temperatures determine high accep-
tance rates with low discrimination between solutions the method acting like a global
search procedure while local search is performed for low temperatures.

Considering a classical Gaussian-Markov system with a probability density state
space function g(x) defined as

g(∆x) = (2πT )−D/2 exp[−∆x2/(2T )],

for an appropiate initial temperature T0, the global minimum can be found if the
temperature is decreased no faster than T (k) = T0/ ln k.

The main difficulty in designing a Boltzman SA consists in determining the start-
ing temperature as well as an efficient schedule for the problem under study. In
practice, a T0/ ln k schedule does not offer a fast enough annealing, an exponen-
tially decreasing schedule being preferred, in different forms, like, for example,
T (k) = T0 exp((c − 1)k), T (k) = c T0, with 0 < c < 1, e.g. c ≈ 0.98. To be
noted that, although offering faster cooling schedules, the algorithm’s proof of sta-
tistical asymptotic convergence does not stand for the aforementioned exponential
annealing schemes.

As a general formalism, employing Ingber’s notations, we consider a minimiza-
tion problem under the following form:

min
α∈Λ

F (α), α = (α1, ..., αn), Λ = {α : Ai ≤ αi ≤ Bi}

According to the Ingber’s proof, for a generating function gT defined as

gT (y) =
D∏

i=1

1
2(|yi|+ Ti) ln(1 + 1/Ti)

≡
D∏

i=1

gi
T (yi)

the associated cumulative probability distribution can be written as follows:

GT (y) =

y1∫
−1

. . .

yD∫
−1

dy′1...dy′DgT (y′) ≡
D∏

i=1

Gi
T (yi)

Gi
T (yi) =

1
2

+
sgn(yi)

2
ln(1 + |yi|/Ti)
ln(1 + 1/Ti)

In this case, the global optimum is statistically attainable for a Ti(k) = T0i exp(−cik
1/D)

annealing schedule:

∞∑
k0

gk ≈
∞∑
k0

[
D∏

i=1

1
2|yi|ci

]
1
k

= ∞

The adaptive simulated annealing generation function is defined as follows, over
a set of uniformly generated random variables, ui ∈ U [0, 1]:
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αi
k+1 = αi

k + yi(Bi −Ai), where yi is defined as

yi = sgn(ui − 1/2) Ti[ (1 + 1/Ti)|2ui−1| − 1 ], yi ∈ [−1, 1]

In addition to the standard simulated annealing approach, a reannealing method
is periodically applied making use of pre-computed sensitivities which offer infor-
mation describing the local landscape structure. For each αi ∈ α the associated
sensitivity si is computed. For the herein formalism, sensitivities are computed by
including gradient information although no restriction is imposed on defining differ-
ent sensitivities measures. At a specified number of accepted solutions, reannealing
takes place, using the pre-computed sensitivities for updating temperatures and the
ki steps as follows:

T ′
ik = smax

si
Tik, k′i =

[
ln(T0i/T ′

ik)
ci

]D

, si = ∂F
∂αi

Considering also simulated quenching, the annealing schedule may be re-defined
for including quenching factors:

Tki = T0i exp(−cik
Qi/D
i ), where ci = mi exp(−niQi/D)

mi, ni defining control parameters which may be adjusted for fine-tuning the al-
gorithm for a specific problem.
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